A MULTICENTER STUDY OF THE COMPLICATIONS AND RISKS ASSOCIATED WITH CARDIAC RESYNCHRONIZATION THERAPY IN PEDIATRIC AND CONGENITAL HEART DISEASE PATIENTS

Authors
Henry Chubb MA MBBS PhD1,2, Douglas Mah MD3, Maully Shah MD4, Kimberly Y Lin MD4, David Peng MD5, David Bradley MD5, Benjamin Hale MD5, Lindsay May MD6, Susan Etheridge MD6, Doff B McElhinney MD1,2, Anne M Dubin MD1

Author Affiliations
1Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, CA, USA
2Division of Pediatric Cardiothoracic Surgery, Department of Cardiothoracic Surgery, Stanford University, CA, USA
3 Department of Cardiology, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School; Boston MA, USA
4 Department of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
5 Division of Cardiology, C.S. Mott Children’s Hospital, University of Michigan, Ann Arbor, MI, USA
6 Department of Cardiology, Primary Children’s Hospital, University of Utah, Salt Lake City, UT, USA

Corresponding Author
Henry Chubb, Clinical Assistant Professor, Department of Pediatrics, Stanford University School of Medicine, 750 Welch Road, Stanford, CA 94304
Telephone: 650 721 2121
mhchubb@stanford.edu
Objectives
Cardiac resynchronization therapy (CRT) studies in pediatric and/or congenital heart disease (CHD) patients have shown an improvement in ejection fraction and heart failure symptoms. However, the long-term risks of this important treatment modality are not well-established. This study aimed to quantify, and identify determinants of, complications and longitudinal CRT system survival in a multicenter cohort.

Methods
All CRT recipients aged <21 years and/or CHD, with systemic ventricular ejection fraction <45% and symptomatic heart failure prior to CRT implant were identified. Detailed baseline indices, acute (<30days) complications, and long-term follow-up including lead failure and system revisions were collected.

Results
In total, 167 eligible CRT recipients were identified. Median weight at implant was 36.7kg [25th-75th centiles 16.2-70kg]. Median follow-up was 3.9years [1.2-7.9years]. The majority of implants were pacing-only (CRT-P, 125(74%)), with defibrillation capability (CRT-D) in 43(26%). The system was endovascular in 49(29%), epicardial in 109(65%), and hybrid in 9(5%).

Acute (<30days) complications were reported in 14(8%) subjects (including significant bleeding (3), acute infection (1), diaphragmatic capture (5, all epicardial systems), pneumothorax (1), generator pocket complication requiring reintervention (4)). There were 4(2%) late system infections (31months [6-53months] post implant). System revision (generator or lead replacement) occurred in 50% of CRT systems by 5.8 years post-implant. Time to system revision was shorter for CRT-D (versus CRT-P) systems (HR 1.9, p=0.035), and lead failure rates were higher for epicardial/hybrid systems (HR 3.1 [1.08-9], p=0.035). (Figure 1A-B). Those with the very lowest weight at implant experienced a higher risk of complications (Figure 1C), with each weight band (+/-5kg) below 10kg associated with significantly increased risk.

Conclusions
In pediatric and CHD patients, CRT is associated with a risk of acute complications and relatively early system revisions, particularly in the smallest (<10kg) patients. These factors should be taken into consideration when implementing this important therapy.